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Summary 

The present paper describes some calculations of the speed of sound u in a theoretical 
Lennard·Jones and Devonshire liquid. It is found that u decreases as the temperature 
is raised, but increases if the liquid is compressed. When quantum effects are considered 
it is found that u decreases as the value of de Boer's quantal parameter A * is increased. 
All these effects have been observed in experiments on real liquids. 

1. INTRODUCTION 

The properties of compressional waves in a liquid are closely related to the 
forces acting between its molecules, and any theoretical treatment of such waves 
must start with a model for liquids which takes account of these forces. Kincaid 
and Eyring (1938) presented a treatment of this kind in which they assumed 
that the molecules are hard attracting spheres moving in a uniform potential 
field. The" smoothed" attractive forces between the molecules are represented 
by the uniform potential, and the repulsive forces are assumed to be zero except 
at the collision of molecules where they become infinite. 

This is a crude model, but it was improved by Lennard-Jones and Devonshire 
(1937) who retained the simplification of spherical molecular symmetry but 
assumed that the molecules interact in pairs according to the more realistic 
function 

(1) 

where e: is the interaction energy (relative to an energy zero at infinite separation) 
of two molecules whose centres are a distance r apart, and -e:o is the minimum 
value of e: which occurs at the separation r=ro' The first term in this potential 
represents a repulsive force which predominates at small separations and the 
second represents an attraction which outweighs the repulsion at larger separa
tions. Lennard -Jones and Devonshire further postulated that the molecules 
in a liquid spend most of their time near the sites of a close-packed cubic lattice. 
Each molecule is imprisoned in a cell bounded by Hs nearest neighbours but it 
can move classically within the cell subject to the forces between it and its 
neighbours. To simplify the mathematics, Lennard-Jones and Devonshire 
assumed that the potential energy of a molecule at a distance a from the centre 
of the cell can be taken as its average potential over the surface of the sphere 
of radius a, calculated on the supposition that the neighbouring molecules are 
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fixed at their lattice sites. From these assumptions they derived a general 
equation of state (designated here, the" LID" equation) which can be written 
in the reduced form 

P*-j(V*,T*), (2) 

where j is a complicated function and P*, V*, and T* are dimensionless variables 
proportional to the pressureP, molar volume V, and temperature T, respectively. 
They are defined by 

P*=P/(2 i eo/rg) =PfPo, 
V*= V/(Nrg/2 t )= VIVo, 
T*=T/(eo/k)=T/To, 

(3) 
(4) 
(5) 

where N is Avogadro's number and k is Boltzmann's constant (de Boer 1948). 
The molecular units Po, Va' To have been listed for several liquids in an earlier 
paper (Hamann 1960). 

It has been found that the LID theory gives a fair qualitative description 
of the thermodynamics of simple fluids (see, for instance, de Boer and Lunbeck 
1948; Wentorf et al. 1950; Rowlinson 1959) and we have considered it worth
while to use it as a basis of some calculations of the behaviour of compressional 
waves in liquids. 

The present paper will be concerned with the speed of weak (sound) waves 
and Part II of this series will consider the properties of strong (shock) waves. 

II. METHOD OF OALOULATION 

(a) General 
At low frequencies and low amplitudes the speed of sound u in a pure liquid 

is related to the thermodynamic properties of the substance by 

u=V[:Ov(~): - ~(:~Lr, (6) 

where M denotes the molar weight of the liquid and Ov is its molar heat capacity 
at constant volume. If the molecules interact according to the potential function 
(1), this relation can be written in the reduced form 

u*=V*[~;(~~:): -(:~:Lr, 
where P*, V*, and T* are defined by (3), (4), and (5), and 

O;=Ov/Nk, 

u*=u/{Neo/M)i=u/(eo/m)i 
=u/uo, 

(7) 

(8) 

(9) 

m being the molecular mass. Some values of Uo for several liquids have been 
listed previously (Hamann 1960). 

For monatomic liquids or for simple diatomic liquids in which the molecular 
rotation is restricted, 0; can be calculap~d from the equation of state. It follows 
that u* can also be derived from this equation. 
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(b) Classical LJD Liquids 
In its original form the LJD theory assumed that the motion of each molecule 

within its cell obeys the laws of classical mechanics. This assumption is justi
fiable if the molecules are heavy (e.g . .A, Kr, Xe, N2) but it is invalid for light 
molecules (e.g. H 2, D2, He3, He4, Ne). Here we shall consider the classical model 
first and then treat the quantal generalization as a correction to the classical 
theory . 

Wentorf et al. (1950) have published extensive tables of the thermodynamic 
properties of classical LJD fluids. Amongst the properties they listed were the 
compressibility factor P*V* /T* (=PV/NkT) and the heat capacity C;, both as 
functions of V* and T*. Their data allow us to estimate. the derivatives 
(aP*/aT*)vand (ap*/aV*h, and hence to derive u* for a wide range of pressures, 
volumes, and temperatures. 

In the liquid region of the LJD theory p* changes quite slowly with T* 
at constant volume, and (ap*/aT*)v can be found accurately by the method of 
differences. But at constant temperature p* is a rapidly changing function of 
V* and it is necessary to fit the tabulated values to an analytic expression in 
order to arrive at reliable values for (ap*/av*)p By trial we have found that 
the polynomial 

(10) 

(at constant T*) gives a good description of the p* - V* relation over the range 
of volumes V* between 0·9899 and 1· 5556, and at temperatures T* between 
o . 7 and 1· O. We therefore fitted the data to this formula by least squares, 
using a standard programme for the SILLIAO computer, and then derived 
(ap*/aV*h by straightforward differentiation. 

(c) Quantal LJD Liquids 
In liquids composed of light molecules it is not justifiable to assume that the 

molecules move classically within their cells : it is necessary to allow for the 
finite spacing of the energy levels. de Boer (1948) has shown in a general way 
that this correction makes the thermodynamic functions dependent on a quantal 
parameter A* as well as on V* and T* (or p* and T*). The quantity A* is 
defined by 

(11) 

where h is Planck's constant. It is the reduced de Broglie wavelength of relative 
motion of two molecules of mass m and relative kinetic energy eo, and it is a 
characteristic property of the molecules. The greater its value the more will the 
liquid deviate from classical behaviour. Values of A* for some simple liquids 
have been listed in an earlier paper (Hamann 1960). 

Several attempts have been made to generalize the LJD theory to allow 
for the influence of A *. de Boer and Lunbeck (1948) worked out the quantum 
correction to p* in the form of an infinite power series in A*2, but unfortunately 
the series often fails to converge. Hamann (1952) proposed an alternative 
treatment which involved some physical and mathematical simplifications but 
had the advantage of giving the quantum correction in a simple closed form. 
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Recently Levelt and Hurst (1960) have presented an exact calculation based on 
numerical computations of the energy eigen values for molecular motion in the 
complex LID field. But it is doubtful whether the work involved in these 
computations is justified by the crude nature of the original LID model, and we 
have preferred here to use the approximate, but convenient, algebraic correction 
(Hamann 1952). In the reduced units, the correction to the pressure is (David 
and Hamann 1953). 

p* - p* ~T*(l+~ v..* dY**)/V*(X*_l), (12) 
(quanta.l) (classical) 2 Y d V 

provided that ~* >1'5, where 

and y* is related to V* by 

The corresponding correction to the heat capacity is 

0; 
(quantal) 

0; =3(x* -2)/4(x* -1)2. 
(classical) 

(13) 

(15) 

We have applied the correction (12) to the classical LID pressures listed by 
Wenton et al. (195O) and then calculated the derivatives (oP*/oT*) v and (oP*/oV*)r 
in the same way as before. 

III. RESULTS AND DISCUSSION 

(a) Liquids at Low Pressures 
If a liquid is at a temperature below its normal boiling point then its reduced 

vapour pressure p* is very small and can be assumed to be zero. Under these 
conditions V* and u* depend only on T* and A* (Hamann 1960). We have used 
equation (10) to find the zero pressure values of V* and applied equation (7) 
to calculate the corresponding values of the reduced speed of sound. The results 
are listed in Table 1. 

It will be seen that u* decreases with increasing temperature, in contrast to 
its behaviour in a perfect gas (Hamann 1960), and that at a particular temperature 
it decreases with an increase in the quantal parameter A *. This last effect 
arises from the fact that the zero-point energy inflates the volume of the liquid 
and makes it much more compressible than a classical liquid. 

The theoretical results are compared with experimental data in Figure 1. 
It is clear that the experiments show the predicted dependence of u* upon T* 
and A * although the numerical agreement is not very good. The lack of agree
ment evidently arises from the faults of the " cell" model rather than from the 
mathematical approximations of the LID theory. We find that Dahler and 
Hirschfelder's (1961) improved cell theory gives even worse agreement with 
experiment, the calculated values of u* being about 20 % higher than those for 
the LID theory. Barker's (1961) new" tunnel" model gives good results for 
classical liquids but is not easily applied to quantal ones. 
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'I'ABLE 1 

SOME REDUCED PROPERTIES OF CLASSICAL AND "QUANTIZED" LJD LIQUIDS AT ZERO PRESSURE 

Coefficient 
Isothermal 

Temper- of Thermal 
Compressibility H eat Speed 

LJD Volume Expansion of 
ature 

1 CV*) 
Capacity 

Liquids V* 
1 CV*) • Sound T* V* ap* T Ov 'u* V* aT* p 

0 0·916 0 0·0133 0 8·30t 
0·70 1·037 0-244 0-0348 2-61 6·63 
0·75 1·050 0·261 0-0386 2·58 6-47 

(a) Classical: 0-80 1·065 0-287 0-0433 2-55 6·34 
A*=O 0-85 1·081 0·316 0·0493 2-53 6·17 

0-90 1·099 0-352 0-0571 2-50 5·98 
0·95 1-120 0-405 0-0683 2·47 5-78 
1·00 1-145 0-491 0-0851 2·43 5-60 

0·70 1-090 0-319 0·0454 2·71 6-00 
0·75 1·109 0·358 0-0527 2-68 5·77 

(b) Quantal: 0-80 1·130 0-408 0-0626 2-64 5-52 
A*=0·5 0-85 1·155 0-477 0-0771 2·59 5·24 

0-90 1-186 0-584 0-1004 2-54 4·92 
0-95 1-226 0-784 0·1458 2·47 4-53 
1·00 1·290 1·366 0-286 2·38 3·99 

0·70 1-213 0-474 0-0819 2-46 4-87 
(e) Quantal: 0·75 1·245 0·586 0-1061 2·47 4-58 

A*=I'O 0·80 1-288 0·780 0-1516 2·45 4·22 
0-85 1·353 1-287 0-280 2·38 3-71 

t This value was derived previously (Hamann 1960)_ 

Our calculations on quantal liquids were limited to values of A * less than 
1 ·5 for two reasons: 

(i) If A * is much greater than one, the stable range of the liquid state is 
shifted to lower reduced temperatures than are covered by the tables of Wentorf 
et al. (1950). 

(ii) Equations (12) and (15) were based on an Euler-Maclaurin expansion 
of the partition function (Hamann 1952) which is only valid when x* is greater 
than 1·5. If A* is large, x* becomes less than this value. We have therefore 
not been able to apply the theory directly to H2 and the helium isotopes, but the 
trend of the curves to A * =1 is certainly sufficient to explain the behaviour of 
the lighter liquids. 

(b) Liquids at High Pressures 

The computation of u* is easily extended to compressed liquids. Using 
the polynomial form (10) of the p* - V* relation, we can derive values of the 
derivative (oP*jOV*)T over a wide range of temperatures and densities. .As 
before, the derivative (oP*joT*)v and the corresponding values of p* and 0; 
can be taken directly from the tables of Wentorf et al. (1950). The results are 



6 

u* 

H. G. DAVID AND S. D. HAMANN 

9r---,-1--,-1--r-,--r---r--,1---,1---,,---,---,1---, 

-----
81-

71-

6 

5 

4 

3 

21-

------
OA 
x N2 

• °2 
.0. CH4 

+ H04 

+ A*=2.64 

o He 3 

* A = 3·08 

OL---~O~'~I---nO~'2~~O~.~3--~OL'4~~O~.~5--~O~.6~~O~'~7---=o~.e~--O~.L9----IL,O----~'.' 

Fig. l.--A comparison of the calculated and experimental speeds of sound in 
simple liquids. The sources of the experimental data for A, N., 0" CHI' H" 
and He' have been given in an earlier paper (Hamann 1960). The data for 

Hea have been taken from a paper by Atkins and Flicker (1959). 

u· 

Fig. 2.--The effect of pressure on the speed of sound. The curves 
represent the theoretical Leonard-Jones-Devonshire relations and the 

crosses denote the experimental data for argon at T*=0·75. 
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plotted in Figure 2, which also shows some experimental data for liquid argon, 
obtained by van Itterbeek, van Dael, and Grevendonk (1959) in the pressure 
range 1 to 72 atm. Again the theory predicts the right kind of trend in u* with 
increasing pressure. The agreement between theory and experiment would 
probably be better at higher pressures (P*> 2; that is, P> 1000 atmospheres 
for argon), where the cell model becomes a more realistic one. There is a clear 
need for some experiments in this pressure range. 

(0) Rao's (1940) Relation 
Rao (1940) found empirically that the thermal coefficient of the speed of 

sound in many liquids is close to three times the thermal coefficient of the density. 
Expressed in a reduced form this relation becomes 

:*(:;:t = -A ~*(~;:t, (16) 

where AR:i3. Later Carnevale and Litovitz (1955) observed that a parallel 
relation applies if the density is changed, not by temperature, but by pressure: 
that is 

1 (au*) 1 (av*) u* OP* T=-A' V* oP* T (17) 

where again A' R:i3. These relations are very simple and we considered it worth
while to see whether they have any basis in the LJD theory. 

We find that for classical LJD liquids in the temperature range T*=0·7 
to 1· 0, the relation (16) fails rather badly. The factor A is only about 1· 7 and 
it decreases with increasing temperature. On the other hand, the relation (17) 
is obeyed quite accurately. A' has the value 2·7 ±0·1 and is independent 
of both the temperature and the pressure, to at least P*=2·5 (equivalent to an 
absolute pressure of 1000 atm in liquid argon). 
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